CODE-DE Processing Integration Workshop

25. & 26. June 2018
DLR Oberpfaffenhofen
Outline

- Purpose of the CODE-DE processing portal
- Access the processing portal
- Level-2 Processing
- Level-3 Processing
- Pixel extraction (Matchup analysis)
- Stored Requests
- Production monitoring
Purpose of the Processing Web GUI

- allow to interactively define and submit processing tasks
- allow to monitor processing
- offer access point for picking up the results
Access to the Processing Web GUI

Either from CODE-DE frontpage:

Or via direct link:
https://processing.code-de.org
Access to the Processing Web GUI

Log in using your CODE-DE credentials
Level-2 Processing

- Landing page
- Simplest processor type
- Level-2: typically anything to process a single input file
- Example applications: cloud screening, atmospheric correction, e.g. with Sen2Cor, water constituents retrieval, RGB image generation, …
Level-3 Processing

- Aggregation of input data
- Input: typically L2, but also L1 data
- Typical application: generate time series of cloud-free monthly global maps showing average value of some variable, e.g. amount of burned area
- Allows to fine-tune methods of aggregation
Pixel Extraction (Matchup Analysis)

- Analyses matchups between reference data and L1 or L2 data
- Typical application: validation of processor on basis of in-situ data
- Output: not raster data, but a CSV table of pixels and a report
Regions

- Define/edit/remove processing regions
- Used in processing steps to filter input data set
Requests

- Requests can be stored as templates
- Edit or remove processing requests
- Re-use previous processing requests
Monitoring

- Allows to monitor status of productions
- Check if running, completed, or erroneous
- Cancel ongoing production
- User may edit request and submit again
- Offers button for downloading processing results
Outline – Processing Command Line Interface

• Login to “front end” machine
• Access to data
• Submission of processing requests to the cluster (cpt tool)
• Workflow control scripts
Processing Web GUI

- **browser** (https)
- **CODE Processing Web GUI**
 - Request forms
 - Input collections
 - Processor selection
 - Parameters
 - Job submission
 - Progress monitoring
 - Result set access
 - Download
- **Storage**
 - EO data
 - Sentinel 1
 - Sentinel 2
 - Sentinel 3
 - ...
 - processing results
- **CODE Processing Cluster**
 - Processor tasks
 - Processor images
Project VMs and the command line interface

- **Gateway**
 - ssh
 - Command line client
 - Services
 - Workflows

- **Project VMs**
 - Project1 VM
 - Project2 VM
 - Project3 VM

- **CODE Processing Cluster**
 - Processor tasks
 - Docker containers
 - Linux executables
 - Sentinel Toolbox op.
 - Python w. Anaconda

- **Storage**
 - EO data
 - Sentinel 1
 - Sentinel 2
 - Sentinel 3
 - ...
 - Processing results
Project VMs - login

- Personal user accounts, membership in project group
- One project machine per project
- ssh login via gateway cd-hop.eoc.dlr.de (129.247.255.24)

```
ssh cvuser1@cd-hop.eoc.dlr.de
ssh cvuser1@cd-project1
```
Access to data

- **Sentinel data**

 `/gpfs/DATA2/www/Sentinel1/<year>/<month>/<day>/<zip-file>

 `/gpfs/DATA4/www/Sentinel2/...

 `/gpfs/DATA3/www/Sentinel3/OLCI/...

 `/gpfs/DATA3/www/Sentinel3/SLSTR/...

 `/gpfs/DATA3/www/Sentinel3/SRAL/...

- **Example:**

 `ls /gpfs/DATA4/www/Sentinel2/2018/01/29`

 `S2A_MSIL1C_20180129T002701_N0206_R016_T54HUC_20180129T051552.SAFE.zip`

 `S2A_MSIL1C_20180129T002701_N0206_R016_T54HVC_20180129T051552.SAFE.zip`

 `...`

- **Auxiliary data**

 `ls /calvalus/auxiliary/*`

 `/calvalus/auxiliary/dem:

 SRTM 3Sec`

 `/calvalus/auxiliary/meris_l2:

 atmosphere case1 cloud landaero lv2conf meris_l2_config.xml`

 `/calvalus/auxiliary/watermask:

 150m.zip 50m.zip GC_water_mask.zip MODIS_north_water_mask.zip`

 `MODIS_south_water_mask.zip`
Access to data

- Software package installation location for use on the cluster
 /calvalus/home/<user>/software/<package>-<version>/

- Example:

 ls -l /calvalus/home/cvuser1/software/workshop-ndvi-demo-1.0
 s2tbx-radiometric-indices-6.0.0.jar

- Software packages pre-installed

 ls /calvalus/software/1.0
 sen2cor-2.3.1
 sen2cor-2.4.0
 fmask-python-0.4.0
 idepix-6.0
 snap-buildin-6.0
 urbantep-timescan-1.0
 fub-wew-6.0
 s2-granules-1.0
 calvalus-2.14
 calvalus-2.14.1
 calvalus-2.14.2
 snap-5-cv-2.14.1
 snap-5-cv-2.15-SNAPSHOT
Access to data

- Working directory
 - for input, intermediates, output of a single processing task
 - on SSD of compute node
 - managed by Hadoop, available for the runtime of the task

- Distributed cache
 - processor software automatically deployed and unpacked before use
 - on SSD of compute node
 - managed by Hadoop on a LRU scheme

Sentinel data archive [PB]
Shared file system [TB] for software and data
Home directory [GB]
Tools and examples
Cluster task working dirs [GB]
Submission of processing requests to the cluster

<table>
<thead>
<tr>
<th>productionType: L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>productionName: Sen2cor test</td>
</tr>
<tr>
<td>processorBundleName: sen2cor</td>
</tr>
<tr>
<td>processorBundleVersion: 2.4.0</td>
</tr>
<tr>
<td>processorName: sen2cor</td>
</tr>
<tr>
<td>inputPath:</td>
</tr>
<tr>
<td>- /gpfs/DATA4/www/Sentinel2/2017/04/10/\n S2A_MSIL1C_20170410T103021_N0204_R108_T32UNE_20170410T103020.SAFE.zip</td>
</tr>
<tr>
<td>- /gpfs/DATA4/www/Sentinel2/2017/06/29/\n S2A_MSIL1C_20170629T103021_N0205_R108_T32UNE_20170629T103020.SAFE.zip</td>
</tr>
<tr>
<td>calvalus.output.dir: /calvalus/home/cvuser1/s2-sen2cor-test</td>
</tr>
</tbody>
</table>

s2-sen2cor-test.yaml

- Requests in XML or YAML format
- Production types L2, L3, pixel extraction (MA)
- Processor selection
- Input datasets
- Processing parameters
Submission of processing requests to the cluster

ssh cvuser1@cd-project
cd example-inst
 . myexample

submitproductionrequest special-requests/s2-sen2cor-test.yaml

or in the background:
nohup submitproductionrequest special-requests/s2-sen2cor-test.yaml > sen2cor.out &

ls /calvalus/home/cvuser1/s2-sen2cor-test/
yarn application –list
yarn logs –applicationId <applicationId>
Submission of processing requests to the cluster

productionType: L2Plus
productionName: S2 Idepix test
processorBundleName: urbantep-timescan
processorBundleVersion: 1.0
processorName: Idepix.Sentinel2

inputPath:
- /gpfs/DATA4/www/Sentinel2/${yyyy}/${MM}/${dd}/S2.*T32UNE.*.zip

minDate: 2017-04-01
maxDate: 2017-06-30

calvalus.input.regionName: Hamburg

calvalus.input.regionWKT: POLYGON((9.836883544921875 53.60587002495288,
10.443878173828125 53.60587002495288,10.443878173828125
9.836883544921875,9.836883544921875 53.39020833928862,
9.836883544921875 53.60587002495288))
calvalus.input.format: CALVALUS-SENTINEL-2-MSI-20M

processorParameters: |
<parameters>
 <computeCloudBuffer>true</computeCloudBuffer>
 <cloudBufferWidth>5</cloudBufferWidth>
</parameters>

calvalus.output.dir: /calvalus/home/cvuser1/s2-idepix-test
outputFormat: NetCDF4
Data-driven production

- event for new product
- repeated query for new products
- processing request executed on cluster
- result made available online
Processor bundles

User

installation package

request

Hadoop Cluster

output data

master

feeder

external data source or destination

test server

tests

tests

tests

node 1

local disk

node 2

local disk

node n

local disk

node 3

local disk

node 4

local disk
Spatial and temporal aggregation

L3 parameters

- target resolution
- nearest neighbour resampling, or binning
- temporal compositing period
- valid pixel filter expression
- variables (virtual bands)
- aggregators
Spatial and temporal aggregation

Examples of aggregators

- AVG
- MIN_MAX
- PERCENTILE (MEDIAN)
- ON_MAX_SET (with maximised variable and output bands)
- SNAP Toolbox API to implement more

Examples of valid pixel filters

- for Fmask outputs:
 - fmask == 1 or
 - fmask == 4 or
 - fmask == 5

- for Idepix outputs:
 - not pixel_classif_flags.IDEPIC_CLOUD and
 - not pixel_classif_flags.IDEPIC_INVALID and
 - not pixel_classif_flags.IDEPIC_CLOUD_AMBIGUOUS and
 - not pixel_classif_flags.IDEPIC_CLOUD_BUFFER

- Sen2Cor outputs:
 - quality_scene_classification &
 - (8+128+256+512+1024) == 0
Mean composite (with simple cloud screening)
Max-NDVI composite