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Introduction
Estimating crop yields is pivotal for official statistics on
agricultural productivity to inform policy-making on
sustainable food production. Currently, official crop yield
statistics in Germany relies on extensive and time-
consuming farm surveys and on-farm measurements.
EU’s Copernicus earth observation (EO) program provides a
plethora of satellite data, enabling the remotely sensed
monitoring of agricultural land at high spatio-temporal
resolution. EO imagery, geospatial data on meteorological
conditions and soil properties as well as advances in
machine learning (ML) provide huge opportunities for
model based crop yield estimation, covering large spatial
scales with unprecedented granularity.
This study estimates yields multi-annually, covering four
major crops in Germany, using ML ensembles and multi-
source geodata leveraging the EO cloud platform CODE-DE.
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Approach

Results

Discussion
 Estimating yields for approx. 160,000 parcels per year

spread across two federal states demonstrates
capability to scale by using CODE-DE.

 nRMSEs of best models range between 5 – 10% for
winter crops and between 15 – 25% for spring barley.

 LightGBM outperformed other ensemble estimators,
including the meta estimators.

 Ensemble yield estimations were further used to apply
principle of majority voting ascertaining parcel-wise
means of ‘most trusted’ yield estimations (Fig. 2).

 Robust performance of ensemble-based majority voting
suggests operational utility for agricultural statistics.
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Fig 1. CODE-DE infrastructure (top) and implemented modelling work flow (bottom).

Fig 2. Evaluation of aggregated crop yield estimations over four years for two federal states 

using an ensemble of ML estimators (upper half per estimator, lower half per crop).

Fig 3. Example map depicts winter wheat yields estimated for 2020, aggregated at district level 

for two federal states based on approx. 80,000 parcels.
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ML ensemble:
Base estimators
CTB CatBoost
LGB LightGBM
PLSR Partial Least Square
RFR RandomForest
SVR Support Vector
XGB XGBoost

Meta estimators
SR ElasticNet

VM Voting mean
(histogram-based 
majority voting)

Targeted crops:

WW winter wheat
WB winter barley
WR winter rape
SB spring barley
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Evaluation metrics:

RSQ Coefficient of 
determination

nRMSE normalized root 
mean square error
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