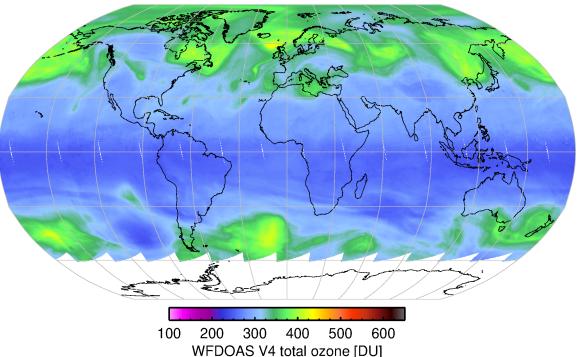
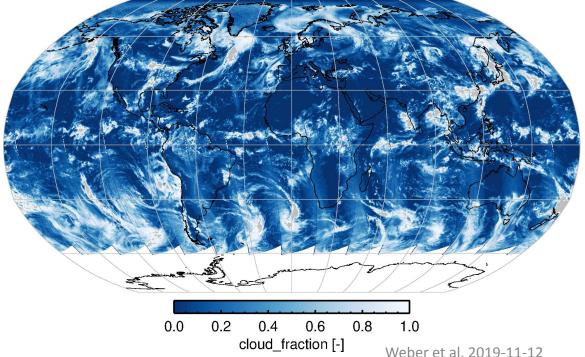
TROPO3-MIDLAT Tropospheric Ozone at Middle Latitudes from S5P/TROPOMI Satellite Data

2. Symposium zur angewandten Satellitenerdbeobachtung, Köln, 12-13 November, 2019

Project goals


Project goals:

 Extend the applicability of two satellite tropospheric ozone retrievals (cloud slicing, convective cloud differential) from the tropics to middle latitudes


How is that possible:

 Taking advantage of the very high spatial resolution (3.5 × 5.6 km²) of the Sentinel-5P (S5P) Tropomi satellite instrument (launched in 2017) by combining total ozone column and cloud observations

S5P total_ozone 20180620

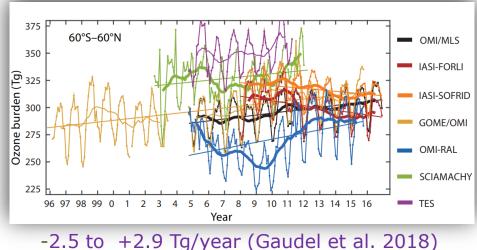
Motivation

Role of tropospheric ozone (0-15 km):

→Smog (produced by nitrogen oxides & hydrocarbons)
 →toxic for plants (reduced photosynthetic activity & crop yield)
 →respiratory problems and heart disease (premature mortality)

• climate

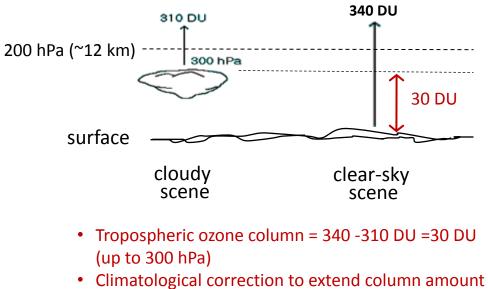
 \rightarrow greenhouse gas


 \rightarrow modifies lifetimes of other green house gases (methane)

Changes in tropospheric ozone

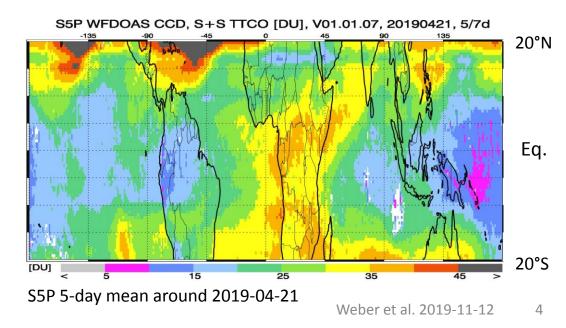
- ~13% increase since pre-industrial times (IPCC 2013)
- Uncertainty in current trends (Gaudel et al., 2018)
- Future changes depends on future greenhouse gas scenarios (CO_2 doubled=18% increase in 2100)
- Mean O_3 lifetime ~23d → long-range ozone transport into remote regions

Need for continued and improved global satellite measurements of tropospheric ozone

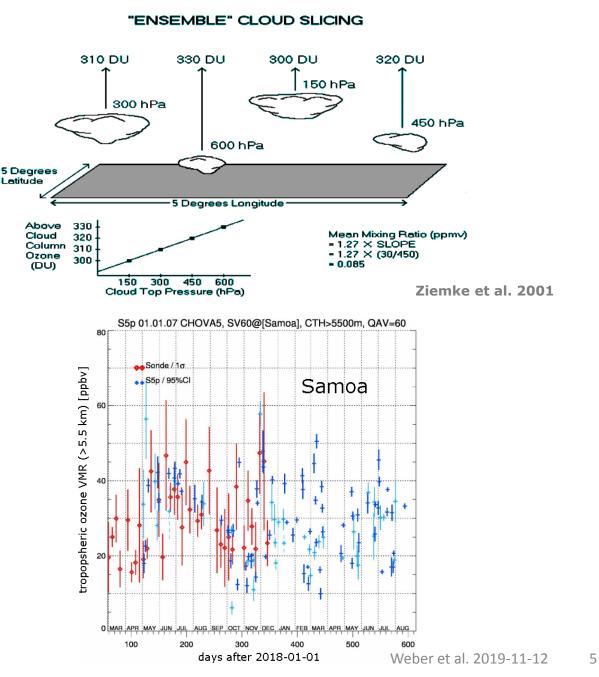

١U)

Tropospheric ozone retrieval methods (1)

Converctive Cloud Differential (CCD)


- \rightarrow Standard method
 - Determine mean above cloud ozone columns above convective clouds in the Pacific (~ stratospheric ozone column
 - Subtract above cloud ozone columns from total column amounts under clear-sky condition (all longitudes) to obtain tropospheric ozone column amounts up to cloud-top height in a grid box
 - □ Correct tropospheric column up to reference altitude (e.g. 200 hPa ~12 km)
- \rightarrow assumption
 - stratospheric ozone is invariant (approximately only true in the tropics)
- \rightarrow S5P/TROPOMI
 - $\hfill \square$ smaller grid boxes
 - $\hfill\square$ more full cloud and clear-sky scenes
 - □ statistics possible over fewer days (instead of month)
 - above cloud columns from nearby regions instead from the Pacific alone

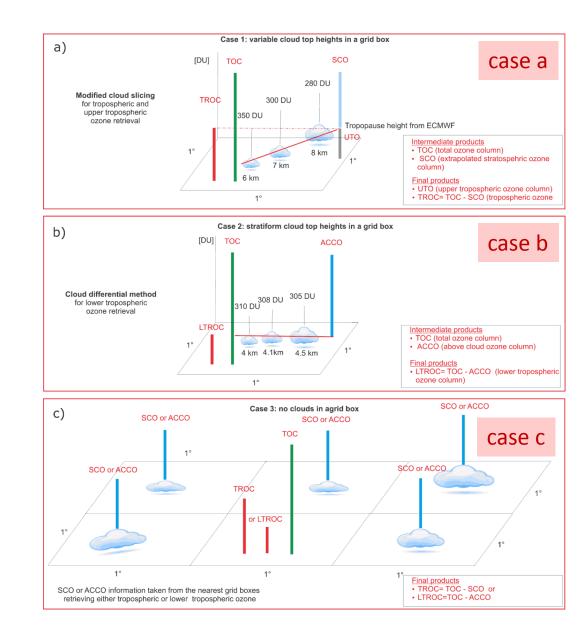
extension into middle latitude possible


Ŵ

up to 200 hPa (reference altitude): 31 DU

Tropospheric ozone retrieval methods (2)

- Cloud slicing (CS)
 - \rightarrow standard method
 - Regression of above cloud ozone columns against cloud-top-pressure results in mean ozone volume mixing ratios
 - Statistics in a given grid box (monthly average value)
 - \rightarrow assumptions
 - stratospheric ozone is invariant
 (approximately only true in the tropics)
 - \rightarrow S5P/TROPOMI
 - □ smaller grid boxes
 - more cloudy scenes
 - □ statistics possible over fewer days
 - extension into middle latitude possible


Ű

DEMATOR algorithm

DEcision Making Algorithm for Tropospheric Ozone Retrieval (DEMATOR)

- regional total ozone and cloud statistics in each grid box
- case selection if total (stratospheric) ozone is invariant
 - \rightarrow variable cloud heights (case a) -> apply regional modified CS algorithm
 - → stable cloud height (case b) -> apply regional CCD algorithm
- Case selection when scene is cloud-free
 - \rightarrow interpolate from neighboring grid boxes (case c)

Work plan & Outlook

Work Plan

- S5P cloud and total ozone statistics (preparation for DEMATOR)
- development of DEMATOR algorithm
- systematic application using TROPOMI data
- validation of DEMATOR results by comparisons with surface and ozone sonde measurements
- 2 peer-review publications
- write an Algorithm Technical Baseline Document (ATBD)
 - → a first step before prototyping the operational algorithm for routine processing (collaboration with DLR and ESA as project follow-up)

Outlook beyond this project

- development into an operational algorithm for Sentinel-5P (and 5)
- adaptation of DEMATOR to geostationary satellites (limited coverage of tropics), e.g. Sentinel-4, GEMS (Korea), and TEMPO (USA)
- consistent long-term multiple satellite tropospheric ozone dataset -> essential climate variable