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[Knapp, M., et al., Environ. Res. Lett., doi:10.1088/1748-9326/acc346, 2023.] 2

Hyperspectral imaging of greenhouse gas hotspots

• Large localized sources
of CO2 and CH4 are
important contributors
to the emission totals
(e.g. oil & gas industry, 
coal mining for CH4; 
power plants, 
industries, volcanoes for
CO2).

• Hyperspectral imaging
techniques can observe
individual plumes of
such hotspots.

CH4 plume from coal mine ventilation in Poland, 
imaged by a ground based hyperspectral camera.

https://doi.org/10.1088/1748-9326/acc346
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• Large localized sources
of CO2 and CH4 are
important contributors
to the emission totals
(e.g. oil & gas industry, 
coal mining for CH4; 
power plants, 
industries, volcanoes for
CO2).

• Hyperspectral imaging
techniques can observe
individual plumes of
such hotspots.

CH4 plume from oil & 
gas production, 
imaged by the
PRISMA satellite

[PRISMA retrievals by Ida Jandl.]

Hyperspectral imaging of greenhouse gas hotspots

30 x 30 m2 resolution
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[PRISMA retrievals by Ida Jandl.]

Hyperspectral imaging of greenhouse gas hotspots

30 x 30 m2 resolution

[Guanter, L. et al., RSE, https://doi.org/ 
10.1016/j.rse.2021.112671, 2022]
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Context: New missions, new methods, new use cases.

• Julia Marshall‘s talk on Wednesday, Session 6b, 9:30-10:30h: 
CO2Image

• My talk on Wednesday, Session 7a „EnMAP II“, 11:00-12:30h: 
Fernerkundung von Methanabluftfahnen aus EnMAP
Beobachtungen

• Here: CO2KI - Methoden der künstlichen Intelligenz zur skalen-
und prozessübergreifenden Erfassung von Quellen und Senken 
von Kohlendioxid 
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How to get emission rates from images?

• Turbulent dispersion of
the plume out of the
source, controlled by
various meteorological
and surfac parameters.

• Mass balance methods
work, but they rely on 
knowledge of the wind 
speed and the
assumption that an 
effective wind speed
drives a quasi-advective
transport:

E = MCH4/L x u

[Knapp, M., et al., Environ. Res. Lett., doi:10.1088/1748-9326/acc346, 2023.]

https://doi.org/10.1088/1748-9326/acc346
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Artist:
Lennart Thiemann
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How to get emission rates from images?

• Turbulent dispersion of
the plume out of the
source, controlled by
various meteorological
and surface parameters.

• Mass balance methods
work, but they rely on 
knowledge of the wind 
speed and the
assumption that an 
effective wind speed
drives a quasi-advective
transport:

E = MCH4/L x u

[Knapp, M., et al., Environ. Res. Lett., doi:10.1088/1748-9326/acc346, 2023.]

• Gaussian plume inversion
• Source pixel
• Cross-sectional flux
• Integrated mass enhancement (IME)

u

https://doi.org/10.1088/1748-9326/acc346


Try AI.

Training data: LES simulations
at 5 m resolution

• After one hour of spin-up a 
snapshot was taken every 10 
seconds and is used as an 
independent turbulent 
realization.

• Overall 7000 plume
snapshots with geostrophic
wind speeds ranging from 1 
to 10 m/s.

• Add Gaussian noise.

11

[S. Jongaramrungruang et al., “MethaNet ...“, RSE,  
https://doi.org/10.1016/j.rse.2021.112809, 2022]

300 x 300 pixels, 5x5 m2 resolution

https://doi.org/10.1016/j.rse.2021.112809


Network architecture

• Starting from the 
network architecture 
proposed for MethaNet, 
we train a convolutional 
neural network to solve 
the regression task of 
flux estimation.

• The optimization 
criterion is the mean 
squared error (MSE). 

• The available data is 
split into a training 
(80%), a validation (15%) 
and a test dataset (5%).

12[S. Jongaramrungruang et al., “MethaNet ...“, RSE,  https://doi.org/10.1016/j.rse.2021.112809, 2022]

https://doi.org/10.1016/j.rse.2021.112809


Network performance
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The average absolute relative 
deviation across all plumes is 
13.8% and 11.9% for plumes 
over 40 kg/hr.

100 kg/h appears the
detection limit (for the
given noise level).

Systematic biases 
are very small.
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Wind forcing 1 m/s

Network performance
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Looking closely, the network
appears to produce biases for
low/high wind speed for low
fluxes: training issue?
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Conclusions / Outlook

• Hyperspectral imaging from satellites, aircraft and ground is a tool to infer emission rates of
large sources.

• Emission rate quantification challenged by turbulent dispersion and uncertain knowledge of
transport velocity.

• Synthetic study with CNNs operating on LES simulations shows promising results. Next steps:
 Optimize network design.
 Make simulations more realistic.
 Investigate dependence on spatial resolution.

• Julia Marshall‘s talk on Wednesday, Session 6b, 9:30-10:30h: „CO2Image“.

• My talk on Wednesday, Session 7a „EnMAP II“, 11:00-12:30h: „Fernerkundung von 
Methanabluftfahnen aus EnMAP Beobachtungen“.

andre.butz@uni-heidelberg.de

mailto:andre.butz@uni-heidelberg.de


16


