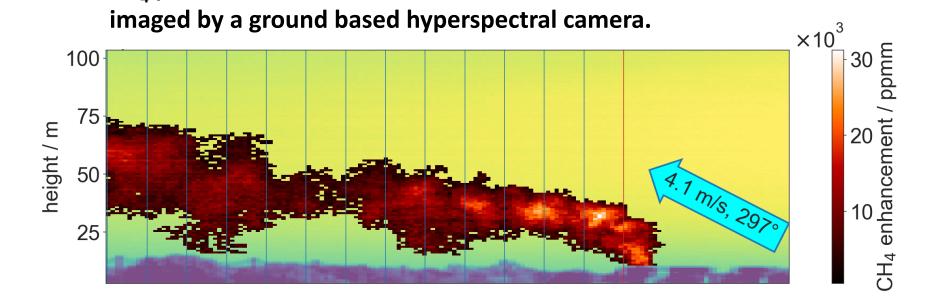
Fernerkundung von Treibhausgaspunktquellen – Emissionsbestimmung durch Maschinelles Lernen

André Butz¹, **Julia Marshall², Thomas Plewa^{1,2}**, Marvin Knapp¹, Leon Scheidweiler¹, Ida Jandl¹, Theo Glauch^{1,2}, Anna Sommani¹, Sanam Vardag¹

¹Institute of Environmental Physics, Heidelberg University

²Institute of Atmospheric Physics, Deutsches Zentrum für Luft- und Raumfahrt (DLR e.V.), Oberpfaffenhofen

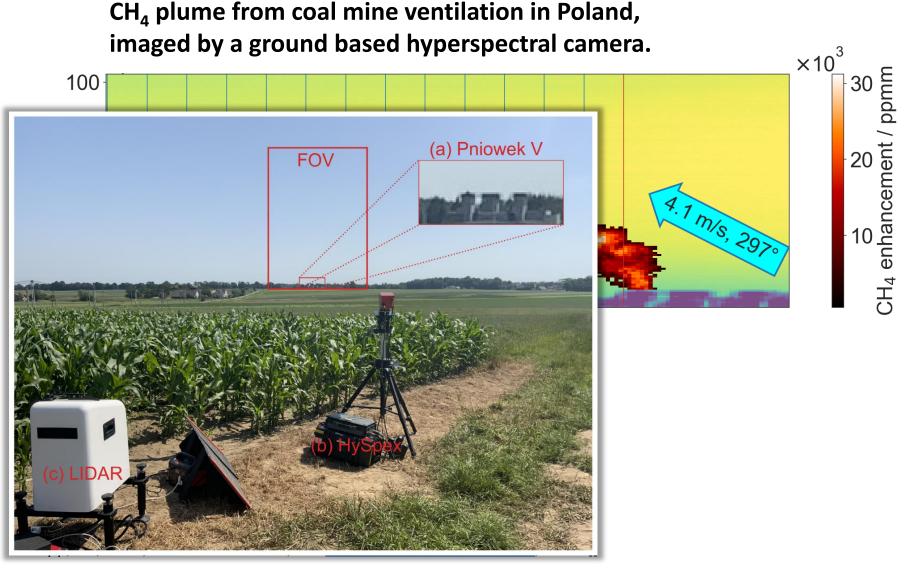
Hyperspectral imaging of greenhouse gas hotspots



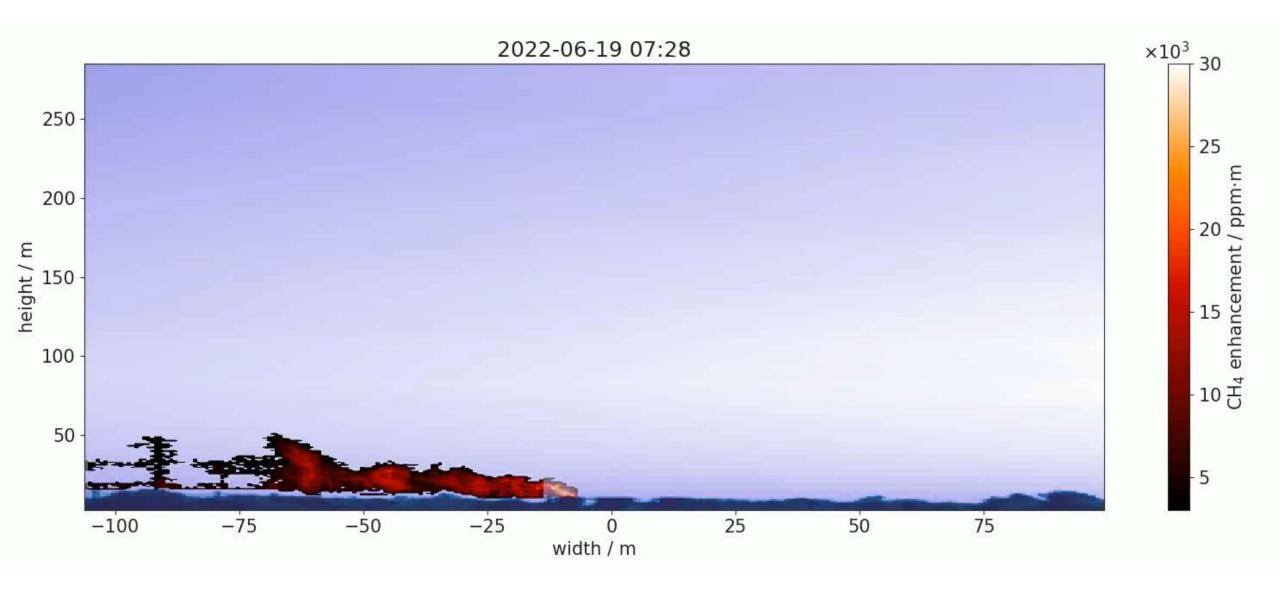
 CH_4 plume from coal mine ventilation in Poland,

- Large localized sources of CO₂ and CH₄ are important contributors to the emission totals (e.g. oil & gas industry, coal mining for CH₄; power plants, industries, volcanoes for CO₂).
- Hyperspectral imaging techniques can observe individual plumes of such hotspots.

Hyperspectral imaging of greenhouse gas hotspots

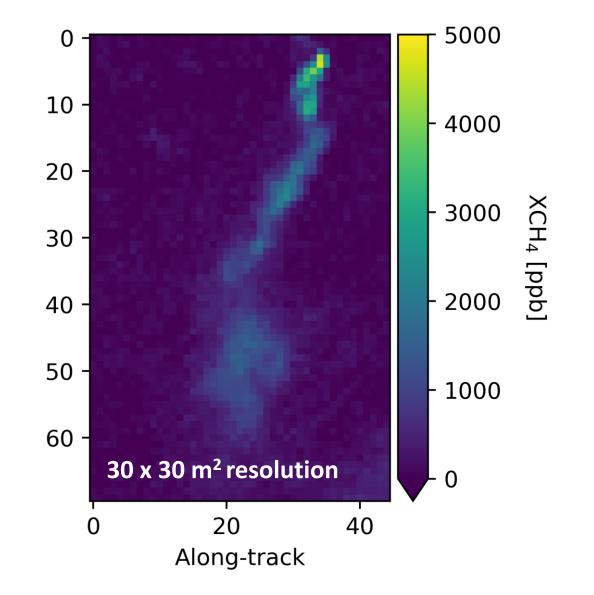


- Large localized sources of CO₂ and CH₄ are important contributors to the emission totals (e.g. oil & gas industry, coal mining for CH₄; power plants, industries, volcanoes for CO₂).
- Hyperspectral imaging techniques can observe individual plumes of such hotspots.



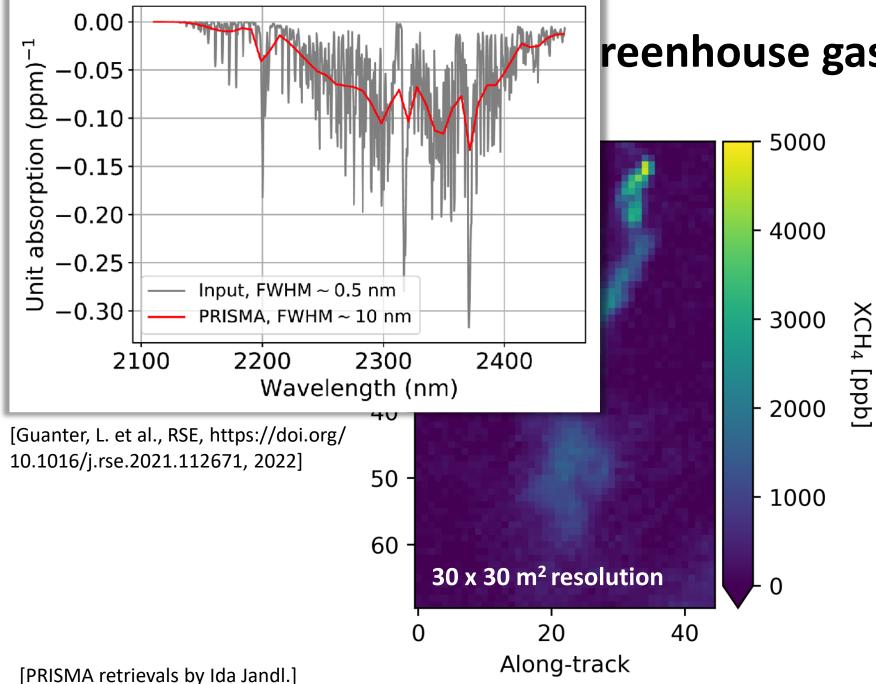
Hyperspectral imaging of greenhouse gas hotspots

CH₄ plume from oil & gas production, imaged by the PRISMA satellite



- Large localized sources
 of CO₂ and CH₄ are
 important contributors
 to the emission totals
 (e.g. oil & gas industry,
 coal mining for CH₄;
 power plants,
 industries, volcanoes for CO₂).
- Hyperspectral imaging techniques can observe individual plumes of such hotspots.

[PRISMA retrievals by Ida Jandl.]



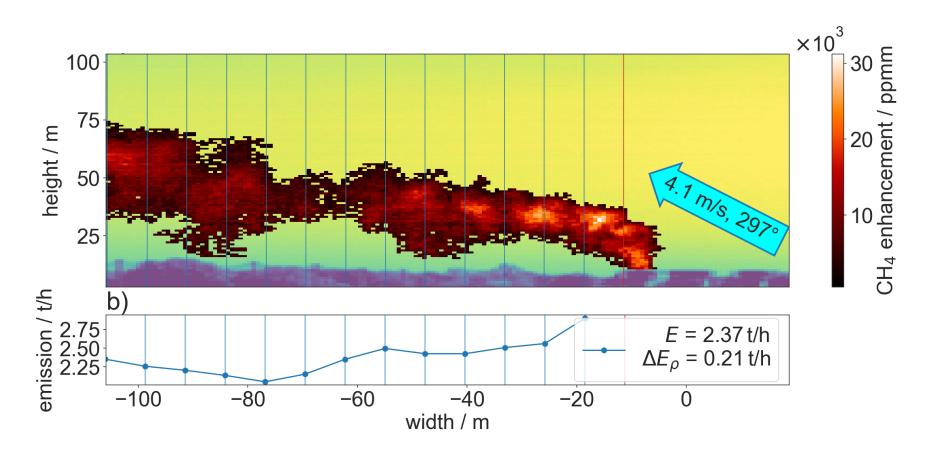
reenhouse gas hotspots

- Large localized sources of CO₂ and CH₄ are important contributors to the emission totals (e.g. oil & gas industry, coal mining for CH_{4} ; power plants, industries, volcanoes for CO_2).
- Hyperspectral imaging techniques can observe individual plumes of such hotspots.

Context: New missions, new methods, new use cases.

- Julia Marshall's talk on Wednesday, Session 6b, 9:30-10:30h:
 CO2Image
- My talk on Wednesday, Session 7a "EnMAP II", 11:00-12:30h: Fernerkundung von Methanabluftfahnen aus EnMAP Beobachtungen
- Here: CO2KI Methoden der künstlichen Intelligenz zur skalenund prozessübergreifenden Erfassung von Quellen und Senken von Kohlendioxid

How to get emission rates from images?



- Turbulent dispersion of the plume out of the source, controlled by various meteorological and surfac parameters.
- Mass balance methods work, but they rely on knowledge of the wind speed and the assumption that an effective wind speed drives a quasi-advective transport:

 $E = M_{CH4}/L \times u_{\perp}$

[Knapp, M., et al., Environ. Res. Lett., doi:<u>10.1088/1748-9326/acc346</u>, 2023.]

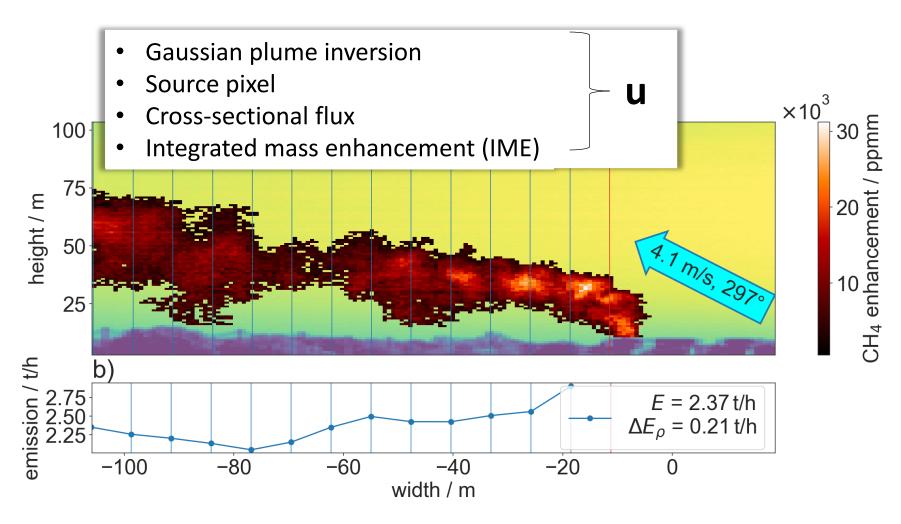


- Turbulent dispersion of the plume out of the source, controlled by various meteorological and surfac parameters.
- Mass balance methods work, but they rely on knowledge of the wind speed and the assumption that an effective wind speed drives a quasi-advective transport:

 $E = M_{CH4}/L \times u_{\perp}$

[Knapp, M., et al., Environ. Res. Lett., doi:<u>10.1088/1748-9326/acc346</u>, 2023.]

How to get emission rates from images?



- Turbulent dispersion of the plume out of the source, controlled by various meteorological and surface parameters.
- Mass balance methods work, but they rely on knowledge of the wind speed and the assumption that an effective wind speed drives a quasi-advective transport:

 $E = M_{CH4}/L \times u_{\perp}$

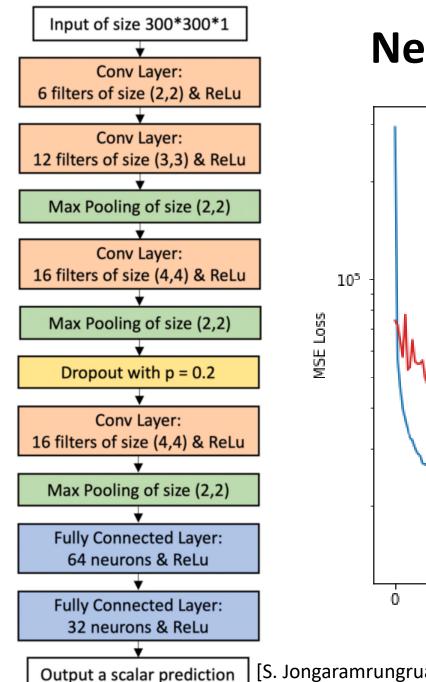
300 x 300 pixels, 5x5 m² resolution

Try AI.

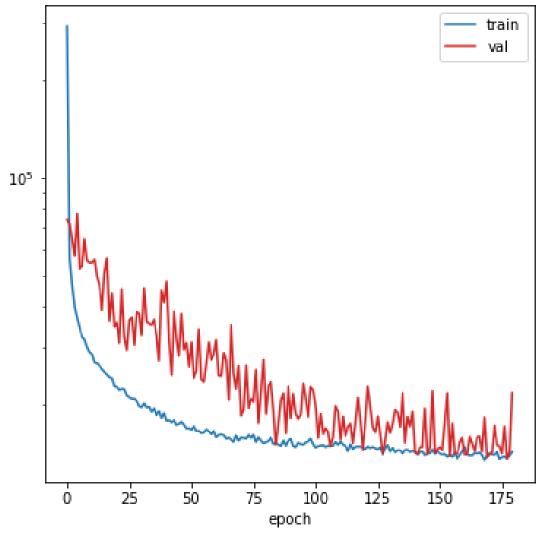
Training data: LES simulations at 5 m resolution

- After one hour of spin-up a snapshot was taken every 10 seconds and is used as an independent turbulent realization.
- Overall 7000 plume snapshots with geostrophic wind speeds ranging from 1 to 10 m/s.
- Add Gaussian noise.

[S. Jongaramrungruang et al., "MethaNet ...", RSE, <u>https://doi.org/10.1016/j.rse.2021.112809</u>, 2022]11



Network architecture

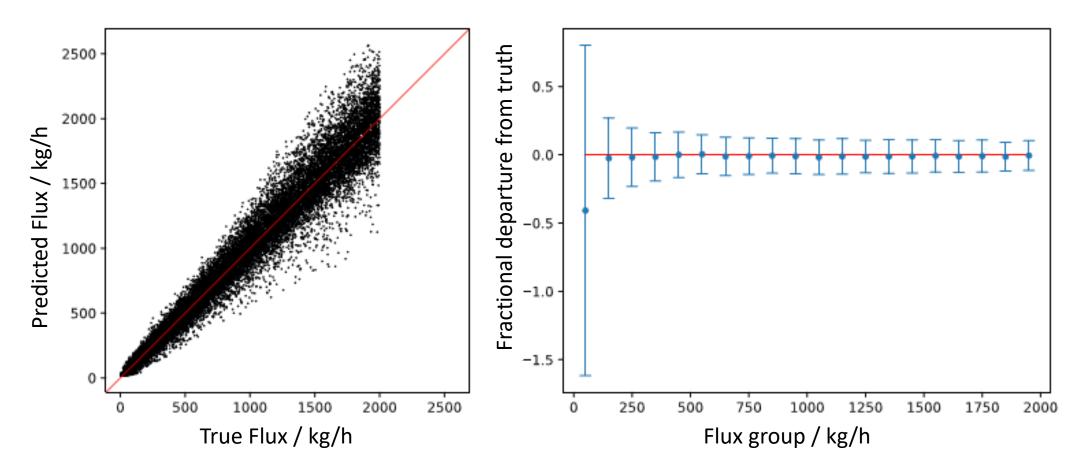


- Starting from the network architecture proposed for MethaNet, we train a convolutional neural network to solve the regression task of flux estimation.
- The optimization criterion is the mean squared error (MSE).
- The available data is split into a training (80%), a validation (15%) and a test dataset (5%).

Network performance

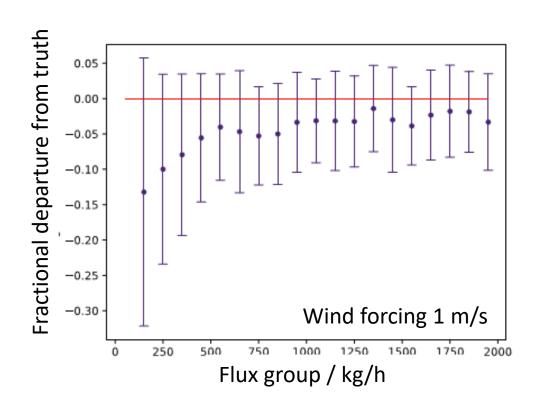
The average absolute relative deviation across all plumes is 13.8% and 11.9% for plumes over 40 kg/hr. 100 kg/h appears the detection limit (for the given noise level).

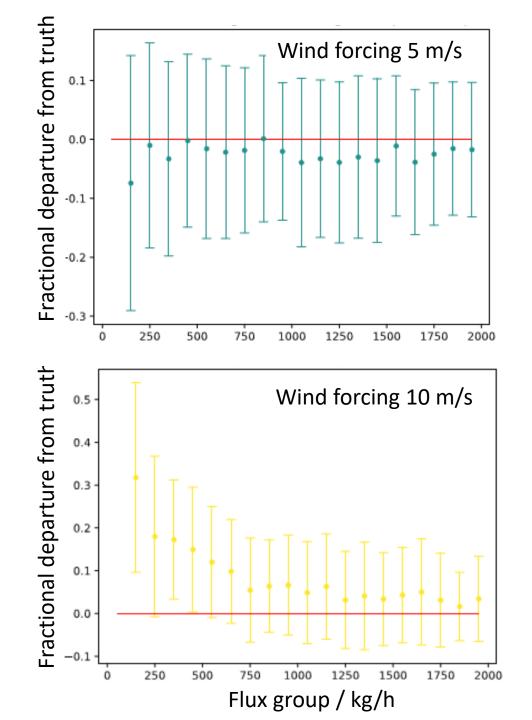
Systematic biases are very small.



Network performance

Looking closely, the network appears to produce biases for low/high wind speed for low fluxes: training issue?





Conclusions / Outlook

- Hyperspectral imaging from satellites, aircraft and ground is a **tool to infer emission rates of large sources**.
- Emission rate quantification challenged by turbulent dispersion and uncertain knowledge of transport velocity.
- Synthetic study with **CNNs operating on LES simulations** shows promising results. Next steps:
 - Optimize network design.
 - Make simulations more realistic.
 - Investigate dependence on spatial resolution.
- Julia Marshall's talk on Wednesday, Session 6b, 9:30-10:30h: "CO2Image".
- My talk on Wednesday, Session 7a "EnMAP II", 11:00-12:30h: "Fernerkundung von Methanabluftfahnen aus EnMAP Beobachtungen".