Hochschule München University of Applied Sciences Institute for Applications of Machine Learning and Intelligent Systems IAMLIS

Wald5Dplus / Forest5Dplus

An AI benchmark dataset for the combined spatial, spectral, polarimetric and temporal coverage of forest stands using Sentinel-1 & -2

Funded by the German Federal Ministry for Economic Affairs and Energy

<u>Sarah Hause</u>r, Andreas Schmitt, Peter Krzystek (IAMLIS, Institute for Applications of Machine Learning and Intelligent Systems)

Wald5Dplus | 27.06.2023 | Sarah Hauser

Source: BayernAtlasPlus | Geo-basisdata: Bayerische Vermessungsverwaltung

"Forest"

Forests & Remote sensing

Wald5Dplus

An AI benchmark dataset for the combined spatial, spectral, polarimetric and temporal coverage of forest stands using Sentinel-1 & -2

Single measurements over three selected forest areas are to be combined in the following five dimensions:

- north-south direction (first dimension),
- east-west direction (second dimension),
- polarimetrically by Sentinel-1 (third dimension),
- spectrally by Sentinel-2 (fourth dimension),
- and over time (fifth dimension)

+ Labels

Study Sites

1. Bavarian Forest National Park

- 25,000 ha
- Airborne LiDAR image including evaluation (2017)

2. Kranzberger Forst near Freising

- 100 ha +
- UAV LiDAR and multispectral data (2020) and preliminary study
- UAV LiDAR and multispectral data (2023)
- 3. Steigerwald
 - 2,600 ha
 - Airborne LiDAR image including evaluation (2015)

Objectives

- Generation of a 'labelled' reference dataset for the use of AI methods in forest remote sensing
- Creation of a cross-domain test dataset for training and validation of AI algorithms
- Information gain through data fusion of open access multimodal earth observation data from the Sentinel-1 and Sentinel-2 sensors, heterogeneous data from different domains such as UAV surveys of forest areas, and the fusion of earth observation data with geodata from field surveys such as forest inventories
- Providing the labelled Sentinel-1 and -2 datasets as Analysis Ready Data Cubes, as well as the algorithms needed to create it and the pre-trained AI classifiers, free to the public

Project description

Work package 1: Data fusion Sentinel-1 and -2 [1-5] – ARD Cubes

- Based on orthogonal transformation of reflection channels of optical and SAR sensors on hypercomplex bases.
- Possibility of compressed data fusion of optical and SAR data features of both systems are used

(the sharpness of optics and the texture of SAR)

- Product of the fusion are normalised Kennaugh elements
- Basic requirement: existence of a total intensity (best-available intensity image) and an orthogonal mapping of the remaining feature space.

Work package 2: Labelling from UAV

- Single tree detection method derives forest parameters such as tree types [7-10] from the point clouds, which are assigned as labels to the fused dataset.
- Aggregation of the vector information to the 10m grid of the data cube
- Creation of a benchmark dataset

Methods (I)

Hypercomplex bases

- Orthogonal transforms in 2ⁿ dimensional spaces

Characteristics

- one total intensity
- several intensity differences
- fusible, normalizable, and compressable

Wald5Dplus approach

- 4 polarimetric Kennaugh elements from Sentinel-1
- 4 spectrometric Kennaugh-like elements from Sentinel-2
- 64 temporally fused Kennaugh-like elements over one year

Methods (II)

Labels

- airborne LiDAR and multispectral data
- single tree segmentation and classification
- single tree polygons with attributes
- forest parameters aggregated on a 10m x 10m grid Add-on
 - pre-trained classification algorithms

Fusion – Visualization

Scale: 1:20.000 Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Fig. 5: Composition displaying the step-wise evolution of the datasets in AOI 2, and for comparison purposes a satellite overview of the ground (A); Kennaugh element K0 of Sentinel-1 MultiSAR (2021-07-19) (B); Kennaugh elements of Sentinel-2 (2021-07-19) (C); Polarimetric and spectrometric fused dataset of Sentinel-1 & Sentinel-2 (2021-07-19) (D); and a polarimetric, spectrometric and temporally fused dataset over the whole period of 2021 (E) © ESA 2021.

Fusion – Visualization

Fig. 6: Hypercomplex data fusion of the Kranzberger Forst on a monthly basis over the period of 2021 based on Sentinel-1 and Sentinel-2 data © ESA 2021

Fusion – Visualization

Scale: 1:20.000 Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community

Fig. 5: Composition displaying the step-wise evolution of the datasets in AOI 2, and for comparison purposes a satellite overview of the ground (A); Kennaugh element K0 of Sentinel-1 MultiSAR(2021-07-19) (B); Kennaugh elements of Sentinel-2 (2021-07-19) (C); Polarimetric and spectrometric fused dataset of Sentinel-1 & Sentinel-2 (2021-07-19) (D); and a polarimetric, spectrometric and temporally fused dataset over the whole period of 2021 (E).

Aggregation

- Aggregation of tree parameters onto the pixel grid of the fused satellite dataset
- using the average and percentage of the values, as demonstrated in Figure 7, with tree type and crown volume.

Fig. 7: Exemplary aggreagtion results of the tree segments onto the 10m grid of the raster data, displaying the tree class (*I*.) and the crown volume (*r*.)

Regression

Research question:

Is there a correlation between fused datasets from space and the forest parameters derived from airborne LiDAR?

Random Forest Regression

- Fused Sentinel-1 and Sentinel-2 datasets
- Labels based on the airborne LiDAR aquisitions (applied single tree segmentation and classification) [10]
- Tree parameters tested:
 - Tree type (coniferous, deciduous)
 - Crown volume
 - Crown base height
 - Tree Height

Correlation clearly detectable with an of R² 0.80

Fig. 8: Scatterplot of the overall regression (l.) and the influence per band – feature importance ranking of the R^2 scores (r.)

Prediction

Fig. 9: Prediction of forest/tree parameters using the RF model, displaying the tree type in A) deciduous and B) coniferous and the crown volume in C)

HM[●]

Summary and prospects

Summary:

- Polarimetric, Spectrometric, and Temporal Kennaugh elements from merged Sentinel-1 and -2 data
- Single tree detection and classification from airborne LiDAR and multispectral cameras
- Prediction of forest prameters such as tree type, crown volume and crown base height while using our fused Sentinel-1 and -2 data based on Hypercomplex bases with a certainty of 80%
- Analysis Ready Data Cubes with forest parameters as labels
- Expected availability by the end of 2023
- Provision of the benchmark data set and the algorithms via the ML4Earth platform

Prospects:

- Multi-temporal regression
- Correlation of further tree-species
- Extension of the reference data set through new flights

References

 [1] Schmitt, A.; Wendleder, A.; Kleynmans, R.; Hell, M.; Roth, A. & Hinz, S. (2020) Multi-Source and Multi-Temporal Image Fusion on Hypercomplex Bases. Remote Sens. 12, 943.
[2] Schmitt, A. and Wendleder, A. (2018): SAR-sharpening in the Kennaughframework applied to the fusion of multi-modal SAR and Optical Images. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., vol. IV-1, p. 133–140, DOI:10.5194/isprs-annals-IV-1-133-2018.

[3] Schmitt, A.; Sieg, T.; Wurm, M. & Taubenböck, H. (2018): Investigation on the separability of slums by multi-aspect TerraSAR-X dual-co-polarized high resolution spotlight images based on the multi-scale evaluation of local distributions, International Journal of Applied Earth Observation and Geoinformation, Volume 64, 181-198.

[4] Schmitt, A. (2016) Multiscale and Multidirectional Multilooking for SAR Image Enhancement. IEEE Transactions on Geoscience and Remote Sensing, 54(9), 5117-5134.

[5] Schmitt, A.; Wendleder, A. & Hinz, S. (2015) The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation.

ISPRS Journal of Photogrammetry and Remote Sensing. 102,

[6] Zangl, R.; Hauser, S. and Schmitt, A. (2022): Guidelines for the Practical Use of Image Data Fusion in Remote Sensing, gis. Science, vol. 4, p.123-147.

[7] Briechle, S.; Molitor, N.; Krzystek, P. & Vosselmann, G. 2020a: Detection of radioactive waste sites in the Chornobyl exclusion zone using UAV-based lidar data and multispectral imagery. ISPRS Journal for Photogrammetry and Remote Sensing, Volume 167, 2020, pp. 345-362, ISSN 0924-2716.

[8] Krzystek, P.; Serebryanyk A.; Schnörr, Cl.; Cervenka, J. & Heurich, M. 2020: Large-scale mapping of tree species and dead trees in Šumava National Park and Bavarian Forest National Park using lidar and multispectral imagery. Remote Sensing 2020, 12(4), 66.1 https://doi.org/10.3390/rs12040661.

[9] Briechle, S., Krzystek, P. & Vosselman, G., 2019. Semantic Labeling of ALS Point Clouds for Tree Species Mapping Using the Deep Neural Network PointNet++, Int. Arch. Photogramm. Remote Sensing, Geospatial Week, Enschede.

[10] Krzystek, P.; Serebryanyk, A.; Schnörr, C.; Červenka, J.and Heurich, M. (2020): Large-

ScaleMappingofTreeSpeciesandDeadTreesinŠumavaNationalParkandBavarianForestNationalParkUsingLidarandMultispectralImagery", RemoteSens., vol. 12, pp. 661.

HM •

Projektteam

	Sarah Hauser (M. Sc.) ¹	Frof. DrIng. Andreas Schmitt ¹	Frof. Dr. Peter Krzystek ¹
	Wissenschaftliche Mitarbeiterin	Forschungsgruppe Photogrammetrie und Fernerkundung	IAMLIS Institutsleiter Forschungsgruppe Photogrammetrie und Fernerkundung
\bowtie	sarah.hauser@hm.edu	andreas.schmitt@hm.edu	peter.krzystek@hm.edu
S	089 1265-2433	089 1265-2416	089 1265-2617
	https://www.geo.hm.edu/kontakt/mitarbeiterin nen/hauser/index.de.html	https://www.geo.hm.edu/kontakt/prof/schmi tt/index.de.html	<u>https://www.geo.hm.edu/kontakt/prof/krzyst</u> <u>ek/index.de.html</u>

Involved in the project in an advisory capacity:

HM♥

- Dipl.-Ing. Anna Wendleder (DFD)² [für Sentinel-1 & ALOS-PALSAR "MultiSAR"]
- Dr. Stefan Auer² & Dr. Pablo d'Angelo² (IMF) [für Sentinel-2 "MAJA"]

¹ Hochschule München für angewandte Wissenschaften, Fakultät für Geoinformation, Karlstraße 6, D-80333 München

² Erdbeobachtungszentrum (EOC) Deutsches Zentrum für Luft- und Raumfahrt (DLR) Oberpfaffenhofen, D-82234 Weßling

18

Hochschule München University of Applied Sciences Institute for Applications of Machine Learning and Intelligent Systems IAMLIS

Thank you for your kind attention!

For more information about the project, visit our website \rightarrow

